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Rationale and Objectives: The aims of this study were to develop and validate an automated method to segment the renal cortex on

contrast-enhanced abdominal computed tomographic images from kidney donors and to track cortex volume change after donation.

Materials and Methods: A three-dimensional fully automated renal cortex segmentation method was developed and validated on 37
arterial phase computed tomographic data sets (27 patients, 10 of whom underwent two computed tomographic scans before and after

nephrectomy) using leave-one-out strategy. Two expert interpreters manually segmented the cortex slice by slice, and linear regression

analysis and Bland-Altman plots were used to compare automated andmanual segmentation. The true-positive and false-positive volume
fractions were also calculated to evaluate the accuracy of the proposed method. Cortex volume changes in 10 subjects were also

calculated.

Results: The linear regression analysis results showed that the automated and manual segmentation methods had strong correlations,
with Pearson’s correlations of 0.9529, 0.9309, 0.9283, and 0.9124 between intraobserver variation, interobserver variation, automated

and user 1, and automated and user 2, respectively (P < .001 for all analyses). The Bland-Altman plots for cortex segmentation also showed

that the automated and manual methods had agreeable segmentation. The mean volume increase of the cortex for the 10 subjects

was 35.1 � 13.2% (P < .01 by paired t test). The overall true-positive and false-positive volume fractions for cortex segmentation were
90.15� 3.11% and 0.85� 0.05%.With the proposed automated method, the time for cortex segmentation was reduced from 20 minutes

for manual segmentation to 2 minutes.

Conclusions: The proposed method was accurate and efficient and can replace the current subjective and time-consuming manual
procedure. The computer measurement confirms the volume of renal cortex increases after kidney donation.
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T
he renal cortex, the outer kidney layer consisting of

renal corpuscles and convoluted tubules, has distinct

morphology and function from the inner renal

medulla. Because glomerular filtration, an important clinical

assessment of renal function, is the main function of the renal

cortex, there has been considerable interest in accurately assess-

ing renal cortex size and volume. The current method for renal

cortex segmentation in clinics, however, is mainly operated

manually (1–6), which is subjective and tedious. There have

been several prior investigations (7–14) of renal cortex

segmentation on computed tomographic (CT) and magnetic
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resonance images, including both semiautomatic (8,10–12)

and fully automatic (7,9,13,14) methods. However, most of

these studies considered the renal cortex and renal column as

one tissue type, although they are anatomically different. In

this paper, we propose a method to precisely and

automatically segment the renal cortex. To the best of our

knowledge, this study is the first work that aims to

automatically separate the renal cortex and renal column in

renal segmentation.

In kidney transplantation, the ability to accurately and reliably

measure renal volumemay give clinicians a better understanding

of the aftereffects of kidney donation and therefore improve the

kidney donor selection process. Limited but available data

suggest that larger renal volume is associated with better renal

graft function in recipients 1 year after transplantation (15). A

few studies (12–16) have estimated kidney volume change

after donation by using image findings (such as computed

tomography, magnetic resonance imaging, and ultrasound). In

this investigation, we also tracked cortex volume change for

the remaining kidneys of the donors. As for the volume

change in the renal cortex, to the best of our knowledge, we

are the first group to measure change after donation.
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MATERIALS AND METHODS

Donors

Approval for this retrospective study was obtained from our

institutional review board, which waived the requirement

for informed consent. This study was compliant with the

Health Insurance Portability and Accountability Act.

Between 1999 and 2006, 108 patients had undergone kidney

donation at our institution. To obtain comprehensive clinical

evaluation, all donors were invited to participate in a follow-

up study. Out of 108, 52 donors returned for clinical and labo-

ratory exams and detailed interviews. Of the 52, we limited our

study to those who had contrast-enhanced CT images and

excluded those who underwent magnetic resonance imaging.

This yielded 29 patients. Among these 29 patients, 27 donated

the left kidney (the right kidney was imaged), and two donated

the right kidney (we excluded these patients because the

number was too small to build the anatomic model). Among

the 27 subjects left in this study, there were seven men and 20

women, with a median age of 46 years (mean, 44 � 11 years;

range, 19–63 years) at the time of donation. Among these 27

subjects, 10 had contrast-enhanced CT images from both

before and after nephrectomy. The median interval between

the baseline and follow-up CT examinations for these 10

patients was 1564 days (range, 895–2181 days).
CT Imaging

Abdominal images were acquired during preoperative

screening. All examinations were performed with one of

two different types of CT scanners (LightSpeed Ultra, GE

Medical Systems, Milwaukee, WI; or Mx8000 IDT 16, Phi-

lips Medical Systems, Andover, MA). Prior to image acquisi-

tion, the patients were injected with 130 mL of Isovue-300

contrast agent (Bracco Diagnostics, Milan, Italy). CT images

were reviewed with a three-dimensional (3D) multiplanar

reformatting interactive mode on an image-processing work-

station (Advanced Workstation; GE Medical Systems). The

integrated workstation allows the reader to draw contours

and regions of interest and automatically calculates the area

enclosed by a region of interest. The slice thickness ranged

from 1 to 5 mm. The in-plane pixel size ranged from 0.63

to 0.88 mm. The distribution of the data was as follows: in

a total of 37 images, there were 10, 12, and 15 images with

in-plane pixel size by slice thickness of 0.63 � 0.63 � 1,

0.71 � 0.63 � 2, and 0.88 � 0.88 � 5 mm3, respectively.

Documented information included patient age at diagnosis

and date of surgery. The examination date, section thickness,

and section spacing were also recorded.
Manual Segmentation

Two independent trained observers (users 1 and 2, both

radiologic CT technologists with >5 years of experience with

kidney CT imaging) performed manual segmentation. User 1

performed manual segmentation for each patient twice with
an interval of 3 months, and user 2 performed manual segmen-

tation only once. To prevent bias, each observer was blinded to

the results of the other. Segmentation was performed using GE

AdvancedWorkstation thin-client server. The observers manu-

ally drew the contours on the cortex boundaries to obtain the

outer-layer and inner-layer contours in a slice-by-slice mode.

Then the tissues between the two layers were identified as

cortex. The total volume of the cortex was obtained by

summing all the voxel volumes lying within the boundaries.

The total segmentation time was also recorded.

Automatic Segmentation

The segmentation of the renal cortex is not a trivial task. The

main challenge in separating the cortex from the rest of the

kidney is their quite similar intensity profiles; therefore, it is

hard to separate them based only on intensity features. The

shape of the kidney can provide necessary constraints. Hence,

in this paper, we propose a 3D shape-constrained graph cut

(GC) method (17,18) to solve this problem. GC methods

have been used widely and have achieved good performance

(18). Then, how to obtain the 3D shape constraint becomes

essential for the whole method. We propose using the

oriented active appearance model (OAAM) method to obtain

the shape constraints. The OAAM effectively combines the

active appearance model (AAM) (19–21) and live wire (LW)

(22) methods. The proposed method consists of three main

parts: model building (training), kidney initialization, and

renal cortex segmentation, as shown in Figure 1. Details for

each part are given as follows.

Model building and training. During the model building

(training) step, there are three main steps: (1) manually specify

landmarks on the training shapes, (2) construct an AAM, and

(3) estimate parameters for the LW and GC methods on the

basis of the training data set.

Landmark specification.—Because of the nature of the proposed

method (slice by slice), we represent a 3D shape as a stack of

two-dimensional contours and manually label the 3D shape

slice by slice. For each slice, operators locate the shape visually

and then identify prominent landmarks on that shape.

AAM construction. —The conventional AAM method (19,20)

is used to construct the model. Themodel includes both shape

and texture information.

Suppose Mj represents the AAM for slice level j and that

the number of slice levels is n; the total model M can be

represented as

M ¼ ðM1; M2; .; MnÞ: (1)

Although we use the pseudo-3D initialization strategy, we

also build the real 3DAAM M3D using the method described

by Cootes et al (19). However, this 3D model M3D is used

only for providing the delineation constraints, as explained

later.

Parameter estimation. —In the proposed method, the initiali-

zation is implemented using the multiobject OAAMmethod,
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Figure 1. Flowchart of the proposed

cortex segmentation system. AAM, active
appearance model; GC, graph cut; LW,

live wire; OAAM, oriented active appear-

ance model; 3D, three-dimensional.
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which combines the AAM and LWmethods. The delineation

is accomplished using the shape-constrained GC method.

During the training stage, the parameters for LW are trained

per the LW method (22) from the training data set. The

parameter estimation for GC is given below.

Kidney initialization. The initialization step plays an important

role in the overall framework. It not only provides shape

constraints to the later GC segmentation but also makes the

whole method fully automated. The proposed initialization

method includes three main steps. First, a slice localization

method is applied to detect the top and bottom slices of the

kidney. After the localization of the top and bottom slices,

all slices in between are linearly interpolated into 32 slices,

as in the AAM model construction process . Second, the

organ is recognized slice by slice via a multiresolution

OAAMmethod. A multiobject strategy (23) is used to further

assist in kidney initialization. Finally, after objects are recog-

nized in all slices, the recognized shapes are stacked together

to form the 3D initialization result. In the initialization

method, the second step is the key for the success of the whole

initialization. More details are given as follows.

Localization of top and bottom slices. —The aim here is to locate

the top and bottom slices of the kidney. Because we have

already trained a model for each organ slice, we can use this

model for slice localization. The proposed method is based

on the similarity to the top and bottom slices’ OAAMmodel.
564
For top slice localization in a given image, the top slice model

is applied to each slice in the image using the recognition

method detailed in the following subsection, and the respec-

tive similarity metric is evaluate (equation 2). Then the slice

corresponding to the maximum similarity is taken as the top

slice of the organ. For the bottom slice detection, a similar

method is used.

OAAM. —The conventional AAM matching method for

object recognition is based on the root mean square difference

between the appearance model instance and the target image.

Such a strategy is better suited for matching appearances than

for the detailed segmentation of target images. This is because

the AAM is optimized on global appearance and is thus less

sensitive to local structures and boundary information.

Conversely, the LW delineates the boundary very well (22),

but it needs a good initialization of landmarks and is an inter-

active method. Here, we integrate the AAM with the LW

method (termed OAAM) to combine their complementary

strengths. That is, the AAM provides the landmarks to the

LW method, and in return, LW improves the shape model of

the AAM. The LW method is fully integrated with AAM

in two aspects: (1) LW is used to refine the shape model in

AAM, and (2) the LW boundary cost is integrated into cost

computation during the AAM optimization method.

In the conventional AAM optimization method, the

optimization is based only on the difference between the

appearance model instance and the target image. The
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boundary cost is not taken into consideration. By combining

the boundary cost, the performance of AAMmatching can be

considerably improved. In the proposed method, the LW

technique is integrated into the cost computation during

the optimization process. Given a current estimate of the

model parameters b, the post t, the texture transformation u,

and the image sample at the current estimate gim, our optimi-

zation method is as follows:

1. Project the texture sample into the texture model frame

using gs ¼ T�1
u ðgimÞ:

2. Evaluate the errors:
Texture error EAAM = jr(4)j2, where 4T = (bTjt0TjuT)
and r(4) = gs

0 � gim
0.

Total error by combining EAAM and LW cost along the

shape boundary ELW,
Etotal ¼ a1 � EAAM þ a2 � ELW: (2)

3. Compute the predicted displacements d4 = �Rr(4),

where R ¼
�
vrT

v4

vr

v4

��1
vrT

v4
:

4. Set k = 1.

5. Update the parameters 4 ) 4 + kd4.

6. On the basis of the new parameters 4, repeat steps 1 to 3,

and obtain the new error E0
total.

7. If E0
total < Etotal, accept the new parameters and proceed

to step 8; otherwise, try k = 0.5, k = 0.25, and so on,

and return to step 5.

8. Repeat starting with step 1 until no improvement is made

to the total error.

Renal cortex segmentation. The shape constrained GC

methods is the building block of the proposed renal cortex

segmentation algorithm, we presented it first.

Shape-constrained GC. —The segmentation problem can be

formulated as an energy minimization problem such that for

a set of pixels P and a set of labels L, the goal is to find a labeling

f: P / L that minimizes the energy function

Enðf Þ ¼
X
p˛P

Rp

�
fp

�
þ

X
p˛P;q˛Np

Bp;q

�
fp; fq

�
; (3)

whereNp is the set of pixels in the neighborhood of p, Rp(fp) is

the cost of assigning label fp˛L to p, and Bp,q(fp, fq) is the cost of

assigning labels fp, fp˛L to p and q.

In our framework, the unary cost Rp(fp) is the sum of a data

penaltyDp(fp) and a shape penalty Sp(fp) term. The data term is

defined on the basis of the image intensity and can be consid-

ered as a log likelihood of the image intensity for the target

object. The shape prior term is independent of image

information, and the boundary term Bp,q is based on the

gradient of the image intensity.
The proposed shape-integrated energy function is defined

as follows:

Enðf Þ ¼
X
p˛P

h
a�Dp

�
fp

�
þ b� Sp

�
fp; xo

�i

þ
X

p˛P;q˛Np

g� Bp;q

�
fp; fq

�
;

(4)

where a, b, and g are the weights for the data term,

shape term Sp, and boundary term, respectively, satisfying

a + b + g = 1. These components are defined as follows:

Dp

�
fp

�
¼

n
� lnP

�
Ip
��O�

if fp ¼ object label

� lnP
�
Ip
��B�if fp ¼ background label; (5)

Bp;q

�
fp; fq

�
¼ exp

	
�
�
Ip � Iq

�2
2s2



� 1

dðp; qÞ � d
�
fp; fq

�
;

(6)

and

d
�
fp; fq

�
¼

�
1 if fpsfq
0 otherwise

; (7)

where Ip is the intensity of pixel p; object label is the label of

the object (foreground); P(Ip j O) and P(Ip j B) are the

probability of intensity of pixel p belonging to object and

background, respectively, which are estimated from object

and background intensity histograms during the training

phase (details given below); d(p, q) is the Euclidian distance

between pixels p and q; and s is the standard deviation of

the intensity differences of neighboring voxels along the

boundary.

Sp

�
fp; xo

�
¼ 1� exp

	
� dfpðp; xoÞ

ro



(8)

and

dfpðp; xoÞ ¼
�
dðp; xoÞ if fp ¼ source label

dðp; xoÞ otherwise
;

where d(p, xO) is the distance from pixel p to the set of pixels

that constitute the interior of the current shape xo of objectO

(note that if p is in the interior of xo, then d[p, xO] = 0); dðp; xoÞ
is the distance from voxel p to the complementary of the shape

xo; and rO is the radius of the sphere that roughly encloses xo.

The linear time method of reference (24) was used in this

study for computing this distance.

During the training stage, the intensity histogram of each

object is estimated from the training images. On the basis of

this, P(Ip jO) and P(Ip j B) can be computed. As for parameters

a, b, and g in equation 4, because a + b + g = 1, we estimate

only a and b by optimizing accuracy as a function of a and
565
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b and set g = 1� a� b. We use the gradient descent method

for the optimization. Accu(a, b) represents the algorithm’s

accuracy (here we use the true-positive volume fraction

(25)). Parameters a and b are initialized to 0.35 each, and

Accu(a, b) is optimized over the training data set to determine

the best a and b.
Renal Cortex Segmentation

The proposed renal cortex segmentation method consists

of three main steps. First, the kidney is segmented using

the iterative shape constrained GC method, which incor-

porated the kidney shape information generated from the

initialization step. Second, after getting the kidney

contour, morphologic operations (five times erosion fol-

lowed by image subtraction) are applied to it to obtain

the initial cortex shape. Finally, the renal cortex is

segmented by using the iterative shape-constrained GC

method. At this time, the initial cortex shape result is

used as a constraint. The iterative shape-constrained GC

method is given as follows:

1. Perform GC segmentation minimizing equation 3 using

the available shape constraints.

2. Compute the new position of the landmarks by moving

each landmark in the shape to the point closest on the

GC boundary.

3. If no landmarks moved or the distance between two shapes

is less than predefined threshold thr, then convergence is

assumed, and we proceed to step 4; otherwise, subject

the shape result to the constraint of modelM3D and update

it as the new shape constraints, and return to step 1.

4. Perform one final GC segmentation on the basis of the

latest shape constraints, and obtain the associated object

boundaries.

In our implementation, thr is set as 1 unit, and for shape

update constraints, we limit the distance each voxel on the

surface can move within any iteration to 6 units, which will

make the shape change smoother.
Statistical Analyses and Segmentation Evaluation

Linear regression analysis (26) and Bland-Altman plots (27,28)

were used to evaluate the correlation and agreement between

the automated and manual segmentation methods. Analysis of

intraobserver variation (two segmentations by user 1),

interobserver variation (between user 1 and user 2), variation

between the automated method and user 1, and variation

between the automated method and user 2 were performed.

The median, mean, and standard deviation of the cortex

volume change for the remaining kidney before and after

the donation were also calculated.

The true-positive volume fraction (TPVF) and false-

positive volume fraction (FPVF) (25) were also calculated to

evaluate the accuracy of the proposed segmentation method.

The TPVF indicates the fraction of the total amount of tissue
566
in the true delineation, and the FPVF denotes the amount of

tissue falsely identified, defined as follows:

TPVF ¼ jCTPj
jCtdj ; (9)

and

FPVF ¼ jCFPj
jUd � Ctdj; (10)

whereCTP is the set of voxels in the true-positive delineation,

Ctd is the set of voxels in the ground truth, CFP is the set

of voxels falsely identified, Ud is assumed to be a binary scene

with all voxels in the scene domain, and j$j denotes volume.

The proposed method was evaluated using the ‘‘leave-one-

out’’ strategy, where ‘‘one’’ refers to one patient. In total, we

had 37 images from 27 patients (10 of whom had two CT scans

before and after nephrectomy). When the testing image was of

a patient who had only one image, the remaining 36 images

were used for training, and when the testing image was of

a patient who had two images, the remaining 35 images were

used for training.
RESULTS

Correlations between Manual and Automatic
Segmentation

The linear regression analysis (Figs 2 and 3) showed that

Pearson’s correlation were 0.9529, 0.9309, 0.9283, and

0.9124 for intraobserver variation, interobserver variation,

the automated method and user 1, and the automated

method and user 2, respectively (P < .001 for all analyses).

The Bland-Altman plots (Figs 2 and 3) showed that the 95%

limits of agreement were �10.31 to 18.19, �4.81 to

31.90, �16.26 to 21.28, and �8.53 to 30.62 mL for

intraobserver variation, interobserver variation, the

automated method and user 1, and the automated method

and user 2, respectively. The correlation analysis results

showed that automated segmentation had strong correlations

with both manual segmentation results. Figure 4 shows

examples of cortex segmentation results of user 1, user 2, and

the automatic method, as well as the 3D visualization results.

Accuracy of Localization of Top and Bottom Slices

The OAAMmodels of the top and bottom slices were used to

identify the locations of the top and bottom slices of the

kidney. The kidney was manually checked by an expert to

generate the reference standard of top and bottom positions.

The average localization error for the top and bottom slices

was 7.3 � 5.2 and 6.1 � 4.5 mm, respectively.

Segmentation Accuracy Measurement

Because the correlation analysis results showed that auto-

mated segmentation had a strong correlation with both



Figure 2. Linear regression anal-
ysis and Bland-Altman plots for

intraobserver and interobserver

assessment of manual segmentation

results.

Figure 3. Linear regression anal-
ysis and Bland-Altman plots for

automated and manual segmenta-

tion results.
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manual segmentation results, the user 1 first segmentations

(User1_1 in Fig 2) were chosen as references. Figure 5

shows the experimental results for one slice level of kidney

and cortex segmentation. The TPVF and FPVF for the

kidney segmentation over the whole data set were 96.32

� 6.12% and 0.29 � 0.05%, respectively. For cortex

segmentation, the TPVF and FPVF over the whole data

set were 90.15 � 3.11% and 0.85 � 0.05%, respectively.

The performance on the training data set was as follows:

the TPVF and FPVF for kidney segmentation were 97.85

� 5.06% and 0.18 � 0.05%, respectively, and for cortex

segmentation were 92.89 � 2.25% and 0.68 � 0.04%,

respectively.
Operation Time Evaluation

The running time for each step was recorded, which consisted

of three parts: initialization time (ie, the time required to

obtain the initialization results), computing time for kidney

segmentation (ie, the time required to automatically delineate

the kidney contours), and computing time for cortex segmen-

tation (ie, the time required to automatically delineate the

cortex contours). The operation times (expressed as mean �
standard deviation) for two manual and automatic segmenta-

tions are reported in Table 1. For automatic segmentation, the

total time is divided into the time required for kidney initial-

ization, kidney segmentation, and cortex segmentation. For
567



Figure 4. Examples of segmentation results for cortex segmentation. The top and bottom rows show the corresponding slices before and after

nephrectomy, respectively. (a)One slice image before nephrectomy, (b) user 1’s segmentation results on (a), (c) user 2’s segmentation results

on (a), (d) automated segmentation results on (a), (e) corresponding slice image after nephrectomy of (a), (f) user 1’s segmentation results on

(e), (g) user 2’s segmentation results on (e), and (h) automated segmentation results on (e).

Figure 5. Experimental results of kidney and cortex segmentation on one slice by the proposed method. (a) Original slice image, (b) initiali-
zation results, (c) kidney segmentation results, (d) cortex segmentation results, and (e) three-dimensional visualization of cortex segmentation

results.

CHEN ET AL Academic Radiology, Vol 19, No 5, May 2012
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TABLE 1. Running Time in the Segmentation Procedures

Procedure Time (s)

Automatic segmentation

Step 1: initialization 40 � 5

Step 2: kidney segmentation 35 � 6

Step 3: cortex segmentation 30 � 3

Total

Kidney segmentation (step 1 + step 2) 75 � 7

Cortex segmentation (step 1 + step 2 + step 3) 105 � 8

Manual segmentation: user 1

Kidney segmentation 435 � 45

Cortex segmentation 1152 � 60

Manual segmentation: user 2

Kidney segmentation 486 � 35

Cortex segmentation 1209 � 50

Data are expressed as mean � standard deviation.

Figure 6. Renal cortex volume change by user 1, user 2, and auto-
mated segmentation results.
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kidney segmentation, the timewas reduced from an average of

8 minutes for manual segmentation to about 1.3 minutes for

automatic segmentation. For cortex segmentation, the time

was reduced from an average of 20 minutes for manual

segmentation to <2 minutes for automatic segmentation.

Volume Change before and after Donation

The median cortex volume of the remaining kidney was

83.4 mL (mean, 82.9� 10.7mL; range, 60.1–96.1 mL) before

donation and 113.1 mL (mean, 112.5 � 14.8 mL; range,

76.8–128.7 mL) after donation on the basis of automated

segmentation results. Figure 4 shows one case of cortex

segmentation (kidney #2 in Fig 6) on one corresponding slice

before and after nephrectomy. Figure 6 shows the quantitative

results: the median volume increase for the renal cortex was

34.1% (mean, 35.1 � 13.2%; range: 14.6%–57.3%) on the

basis of automated segmentation results. The increase was

significant (P < .01 by paired t test).
DISCUSSION

Figures 2 and 3 show that, first, the intraobserver variation had

the highest correlation (r = 0.9529), and interobserver

variation also shows a high correlation (r = 0.9309).

Compared to the correlations for manual segmentations,

automated segmentation also achieved high correlations

with manual segmentation (r = 0.9283 for automated

segmentation and user 1 and r = 0.9124 for automated

segmentation and user 2). Second, on the Bland-Altman plots,

the 95% limits of agreement were�10.31 to 18.19 and�4.81

to 31.90 for intraobserver and interobserver variation, respec-

tively. Compared to the manual results, automated andmanual

segmentation had very similar agreement, with 95% limits of

agreement of �16.26 to 21.28 and �8.53 to 30.62, respec-

tively, between automated segmentation and user 1 and auto-

mated segmentation and user 2. The proposed automated

method achieved high correlations and agreements with

manual segmentation.
For the accuracy analysis of the proposed segmentation

method, user 1’s first segmentations were chosen as references,

and high TPVFs of 96.32% and 89.15% and low FPVFs of

0.29% and 0.85%were achieved for kidney and cortex segmen-

tation, respectively. In addition, we also evaluated the proposed

segmentation method on the basis of the references of user 1’s

second and user 2’s segmentations to determine the perfor-

mance differences. The TPVFs were 96.21% and 90.32%

(96.02% and 90.01%) and the FPVFs were 0.36% and 0.92%

(0.26% and 0.81%) for kidney and cortex segmentation on

the basis of the references of user 1’s second (user 2’s) segmen-

tations, respectively. We can conclude from these results that no

matter which reference was used, high TPVFs of >96%

and >90% and low FPVFs of <0.5% and <1% were achieved

for kidney and cortex segmentation, respectively. The TPVF

(FPVF) for cortex segmentation was lower (higher) than for

kidney segmentation, which could be due to the greater

difficulty in locating the cortex inner wall.

Use of the automatic segmentation algorithm greatly

reduced the time needed for the renal cortex segmentation.

The reduction of the mean segmentation time from about

20 minutes to <2 minutes makes cortex segmentation on

CT imaging more practical in the clinic. The segmentation

process consists of three steps: initialization, kidney segmenta-

tion, and cortex segmentation. The initialization time might

be further reduced by using a hierarchical, multiresolution

strategy, which can also improve the initialization accuracy.

For kidney and cortex segmentation, we used the iterative

shape-constrained GC method. Here, we set the iteration

number to 3. With better initialization, the iteration number

can also be decreased, which can save additional time.

For the cortex volume change of the remaining kidney

before and after donation, all cortex volumes increased on

the basis of user 1’s two segmentations and user 2’s and the

automated segmentations, as shown in Figure 6. Because

automated segmentation achieved high correlations with
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manual segmentation, only the cortex volume change results

on the basis of automated segmentation are given here. On the

basis of automated segmentation, the average increase of the

renal cortex volume was about 35.1%. To the best of our

knowledge, this is the first report of the volume change of

the renal cortex for kidney donors.

Although one limitation of our study was the size of the

study sample, we hope the results presented here will serve

as a pilot study prompting further studies with larger patient

samples to validate the results.
CONCLUSIONS

We developed a fully automated technique to segment the

renal cortex on abdominal contrast-enhanced CT scans.

The method was validated on a clinical data set with 37

contrast-enhanced CT images from 27 patients and achieved

high correlation with manual segmentation. The use of auto-

mated cortex segmentation saved a substantial amount of time.

The proposed technique provides an automated, objective,

and accurate segmentation of the renal cortex, and it can

replace the current subjective and time-consuming manual

procedure. Other potential further improvements of the tech-

nique include the segmentation and measurement of renal

medulla and pelvic volumes.
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